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Noise and randomlike behavior of perceptrons: Theory and application
to protein structure prediction
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In the first part of this paper we study the performance of a single-layer perceptron that is expected to
classify patterns into classes in the case where the mapping to be learned is corrupted by noise. Extending
previous results concerning the statistical behavior of perceptrons, we distinguish two mutually exclusive kinds
of noise (I noise andR noise! and study their effect on the statistical information that can be drawn from the
output. In the presence ofI noise, the learning stage results in the convergence of the output to the probabilities
that the input occurs in each class.R noise, on the contrary, perturbs the learning of probabilities to the extent
that the performance of the perceptron deteriorates and the network becomes equivalent to a random predictor.
We derive an analytical expression for the efficiency of classification of inputs affected by strongR noise. We
argue that, from the standpoint of the efficiency score, the network is equivalent to a device performing biased
random flights in the space of the weights, which are ruled by the statistical information stored by the network
during the learning stage. The second part of the paper is devoted to the application of our model to the
prediction of protein secondary structures where one has to deal with the effects ofR noise. Our results are
shown to be consistent with data drawn from experiments and simulations of the folding process. In particular,
the existence of coding and noncoding traits of the protein is properly rationalized in terms ofR-noise
intensity. In addition, our model provides a justification of the seeming existence of a relationship between the
prediction efficiency and the amount ofR noise in the sequence-to-structure mapping. Finally, we define an
entropylike parameter that is useful as a measure ofR noise.@S1063-651X~97!02004-7#

PACS number~s!: 87.10.1e
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I. INTRODUCTION

The present paper belongs to the mainstream of rese
that focuses on the statistical aspects of learning in ne
networks~for a review see@1,2#!; our main scope is to clarify
their capability to detect statistical information in the lear
ing set. Emphasis on these aspects is motivated by the
sideration that in many cases of practical interest neural
works detect statistical features of the problem under stu
We limit our investigation to the simplest feed-forward ne
ral networks, viz., the single-layer perceptrons, on wh
analytical considerations can be carried out with relat
ease. From now on, for simplicity, the single-layer perce
tron will be referred to as the perceptron.

Our starting point is the notion that pattern overlap
simultaneously the strength and the weakness of percep
used as classifiers. In point of fact overlap promotes cla
fication of never-seen-before inputs but, at the same ti
generates noise@3# that poses limitations to the accuracy
classification. Generally, neural networks are used to b
an artificial mapping linking the end states of processes
are too complex for being extensively simulated or theor
cally investigated. In this context, beside using the netw
as a black box, it might be desirable to fully exploit th
information captured by the network during the traini
stage. In view of the application of the network to an u
known mapping, these pieces of information may be help
to get better insights into the problem at hand. To this a
we devote the first part of the paper to inquiry on the re
551063-651X/97/55~6!/7334~10!/$10.00
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tionships between the statistical information extracted by
network and the characteristics of some test mappings.
very notion of a perceptron as a device sensitive to statist
features alludes to the capability of feed-forward nets
record information in the form of Bayesian probabilitie
@3–5#. However, storage of probabilistic information can
perturbed by a kind of noise (R noise! that was not taken into
account so far. We suggest that for patterns substant
affected byR noise, the network can be likened to a rando
classifier as far as the efficiency of prediction is concern
The performance can be evaluated by modeling the com
tation of each output neuron as a random walk in the sp
of the weights, where the probability of the individual ste
is dictated by the statistical information stored in the weig
converging onto the output neuron at hand. Under these c
ditions the perceptron is said to operate in randomlike mo
The main part of the paper is devoted to the full charac
ization of the randomlike behavior of a perceptron as it
faced with a noisy mapping.

A case in point is the primary-to-secondary structure m
ping of proteins that is studied by means of perceptrons
the second part of the present work. As a matter of fac
more specific motivation for the present investigation is
urgent need for a clarification of the limiting factors th
affect the efficiency of prediction of protein secondary stru
tures@3,6–8#. Some puzzling problems arise in the context
this application and demand proper explanation: on the
hand, the finding that perceptrons are as effective as pre
tors based on statistical methods and, on the other hand
7334 © 1997 The American Physical Society
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55 7335NOISE AND RANDOMLIKE BEHAVIOR OF . . .
sensitivity of the network to the number of examples in ea
class~i.e., approximately the frequency of occurrence of
puts in each class! rather than to specific patterns.

The plan of the paper is the following. In Sec. II w
describe the mapping the network is expected to learn
Sec. III we classify the sorts of noise that potentially affe
the unknown mapping. We then explain the appearance
randomlike component that in Sec. IV is modeled as a se
concurrent random walks and arrive at an analytical exp
sion for the network to predict each class. In Sec. V
specialize our considerations to the prediction of second
structures of proteins@7,9–11#. Data from our previous ex
periments in this area are then used to make a semiquan
tive check of the theoretical predictions of Sec. IV. The
sults of our simulations suggest the introduction of
entropylike measure of the single-pattern ambiguity, as w
as a global measure of intensity of the noise affecting
sequence-to-structure mapping. Finally, in the conclus
section, we point out the bearings of our model on the fo
ing code and the folding mechanism of globular protei
Moreover, the limited performance of the network is trac
back to the intensity of noise and to the noise-induced r
domlike behavior of the perceptron. This allows us to dr
conclusions as to the optimal learning strategy in the p
ence of noise.

II. GENERAL FEATURES
OF THE CLASSIFICATION TASK

The general task we are considering consists of the re
struction of a mapping which classifies symbolic patte
into the appropriate class. The classification discrimina
amongncl classes which will be labeled with greek lette
a, b, g, . . . . More formally, the mappingMW consists of
the set of associationsPj→ck from a space of objects~also
referred to as input patterns! P 5 $Pj% to an
ncl-dimensional space of classesC5$a,b,g, . . . %. The ob-
jectsPj are strings ofW letters drawn from an alphabetA of
NS symbols; formally,Pj5$ l j

1 ,l j
2 , . . . ,l j

W%. By a subpattern
of Pj we mean any subset ofPj ; patternsPk andPl sharing
subpatterns of any length, i.e., such that for somei ,l k

i 5 l l
i ,

are said to be overlapping.
The classck refers to the letter falling in the central pos

tion within the input window of sizeW. The training set
MW is given in the form of two corresponding sequenc
SP5$ l 1 ,l 2 ,l 3 , . . . % ( l jPA) and SC5$c1 ,c2 ,c3 , . . . %,ci
PC. The input window is shifted letter by letter until th
whole sequenceSP has been scanned. In any case the the
developed in the sequel is by no means restricted to
specific rule of pattern production. As far as the single-le
code is concerned, there exists a 1:1 correspondence bet
any letterl i and the components of anNS-dimensional binary
vector, having all components set to zero but the one co
sponding to the desired letter~orthonormal code!. This code
lends itself to creating an unbiased correspondence betw
the set of the possible letters and a set of labels each ha
non-nil overlap only with itself. On the whole there a
W3NS input neurons that take discrete values$0,1% accord-
ing to whether they are activated or not. Each class is re
sented by a single neuron in the output layer. Output neur
have continuous and real-valued activations ranging
h
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]0,1@ ; collectively they form anncl-dimensional output vec-
tor oW 5(o1 ,o2 , . . . ,oncl) ~see the Appendix!. We use the
winner-take-all strategy~see the Appendix! to extract the fi-
nal classification from the actual output of the network. T
weights of the network are randomly initialized and iter
tively corrected by the standard error backpropagation a
rithm ~see the Appendix!. These specifics are sufficient t
introduce the general arguments and the model of Sec
and Sec. IV. For a more complete description of the arc
tecture of the network within the context of the prediction
protein secondary structures, the reader is referred to the
pendix.

III. CLASSIFICATION OF NOISE

To make this paper self-contained, it is convenient
summarize the results of our previous work. Following@3#
we distinguish two kinds of noise which we term intrins
noise (I noise! and representational noise (R noise!. I noise
arises when the training set contains nonoverlapping amb
ous patterns, i.e., patterns that on distinct occurrences
classified in different classes. This kind of noise is due to
inherent ambiguity of the mappingMW ~the supervisor!. I
noise usually reflects the inadequate size of the input wind
such that typical markers of some patterns are missed.

R noise is a side effect of the single-letter orthonorm
input code in that it arises as a consequence of the ove
among patterns associated with different classes. Therefo
happens that the same subpattern is alternatively classifie
different classes as it occurs within different input patter
Concisely,R noise is none other thanI noise that affects one
or more subpatterns rather than the whole pattern.

It follows that on processing an input pattern affected
R noise~ambiguous pattern!, the perceptron has to weigh th
simultaneous contributions of subpatterns that are no lon
unanimous in indicating the same class. This kind of am
guity originates eventually the randomlike behavior of t
network that is described in Sec. III A. Clearly, a prerequis
for R noise to be present is the mixing of subpatterns; in
limit of increasingR noise intensity, correlations among th
letters forming the input patterns are progressively weake
~see, for instance, Sec. V!. Let us remark that there may b
overlap withoutR noise, when all the subpatterns point to t
same class. Finally, it is worth noting that occurrence ofR
noise depends on the input code: actually, one can alw
devise a new input code that nullifies overlap between
representations of any two patterns which, consequen
might be affected only byI noise. However, it would be
erroneous to conclude that it is desirable to get rid ofR
noise; overlap, in fact, is the very basis of the generalizat
capability of perceptrons~as well as of other sorts of neura
networks!. In the following, for want of any specifications
we shall use the term noise to refer to the joint effect oI
noise andR noise.

A. Noise intensity and perceptron’s response

It is clear that were the mapping noiseless and were
weights initially set to zero, the unambiguous rule of as
ciation of any patternP to classci would cause the percep
tron to generate asymptotically a binary 0/1 output, the o
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7336 55M. COMPIANI, P. FARISELLI, AND R. CASADIO
output neuron with unit activation corresponding to cla
ci . Distinguishing patterns as ambiguous and unambigu
is feasible if the mapping is known; yet this is usually not t
case and, in addition, it may be desirable to replace
all-or-none distinction with a new continuous criterion. T
idea is to rank patterns according to the distance of the
responding outputs from thed-like output of strictly unam-
biguous patterns. A reliability scale obtains which is use
to discriminate between reliable and unreliable patter

Qualitatively, the output vectoroW 5(o1 ,o2 , . . . ) of a reli-
able pattern is strongly peaked on any classci , i.e.,
ok'd ik , whereas the typical output of unreliable patter
exhibits non-negligible spread of the activations on m
output neurons. A measure of pattern reliability is introduc
in Sec. V and generalized in Sec. VA.

Now we turn to characterizing the modes of operation
the perceptron as a function of the intensities ofI noise and
R noise. When the mapping is affected byI noise the mean-

ing of the outputoW is susceptible to analytical investigatio
@4,5,12#. It turns out that under batch updating~see Appen-
dix! the backpropagation algorithm ensures the condit
oi
P→n(ci uP)'p(ci uP) wheren and p are the relative fre-

quency and, respectively, the probability of finding patte
P in classci . In the rest of the paper we use superscriptP
whenever it is necessary to emphasize the dependence o
parameter in question on the patternP. When the corrections
of the weights are accomplished according to the alterna
pattern updating procedure~see Appendix!, the convergence
theorem does not apply; nonetheless we have experimen
verified that the learning algorithm still reproduces patte
probabilities~see Fig. 1!. Thus, in the event the network i
faced with a mapping affected byI noise, we are allowed to
define a first mode of operation of the perceptron that will
referred to as Bayesian or pattern-sensitive mode, since
information stored by the network relates to the specific
put pattern.

FIG. 1. Comparison of pattern frequencies with the outputs o
perceptron that has completed a 100 cycle training phase with
thonormal code and pattern updating. The plot shows that the
vation levelsoa

P (s) of a generic output neurona asymptotically
approach the relative frequenciesna

P (d) of each input patternP.
The training set comprises 20 different patterns that are conven
ally indicated with letters on the abscissa. Analogous behavio
exhibited by all of the output neurons, irrespective of their numb
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Also pureR noise is the cause of unreliable classific
tions, although the probabilistic meaning of the network
output cannot be any longer deciphered so easily sincR
noise interferes with the storage of Bayesian probabiliti
As a matter of fact it has been noted that estimation of Ba
sian probabilities is better when one output dominates o
the others@5# ~this is the case of reliable patterns!. The per-
turbing effect ofR noise can be seen most clearly in th
limiting case of strong R noise. Expectedly,
p(ci uP)→p(ci), wherep(ci) is the probability that classci
is predicted oblivious of the patternP.

We can simulate this case by resorting to a random m
ping that is defined by associatingSP ~see Sec. II! with a
random sequenceSC . Randomization has the ultimate effe
of maximizing the intensity ofR noise. A realization of this
experiment on a version of the general problem describe
Sec. II is illustrated in Fig. 2, withC5$a, b, g%. SP is the set
of amino acid sequences introduced in Sec. V, where i
argued that it provides a well mixed set of symbolic subp
terns.SC is generated by sampling the setC of the possible
classes according to assigneda priori probabilities
pa
A ,pb

A ,pg
A . First, we order sequentially the input patterns

means of a labell, and plot the outputsoi
l as a function of

l. If we now smooth out the resulting rugged curve by c
culating local averageŝoi&, we get the plot of Fig. 2. The
interesting outcome is that although the network is no lon
able to record any statistical regularities per individual p
tern, ^oi& reflect the extant piece of information carried b
MW , i.e., the relative abundance of examples per each c
in the training set,pa

A ,pb
A ,pg

A .
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ti-

n-
is
r.

FIG. 2. Dependence of the average outputs on the compos
in classes of the training set. The plot shows the output of a th
output perceptron upon presentation of the patterns of the trai
set, after completion of the learning phase on a random map
~following the usual procedure described in the Appendix!. To per-
form this test we broke up the original letter sequenceSP into 62
traits ~indicated with numerals on the abscissa! and calculated the
average activation̂oi&, i5a,b,g, of the output neurons over eac
trait ~marked, respectively, ass,n,d). The traits correspond to
the 62 proteins composing the training setL62 described in the
Appendix. The plots show small fluctuations around mean val
that closely reflect the probabilitiespi

A with which the random as-
signment to each class has been made in building up the trai
set. In this example,pa

A50.25,pb
A50.22,pg

A50.53. The average
values and standard deviations~evaluated over the 62 traits of th
training set! turn out to be ^oa&50.2460.01,̂ ob&
50.2360.01,̂ og&50.5260.01.
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55 7337NOISE AND RANDOMLIKE BEHAVIOR OF . . .
The limiting case just discussed illustrates a mode of c
sification ~randomlike mode! which is antithetical to the
Bayesian mode. The most striking departure from the Ba
sian mode consists in the network exhibiting, in a sen
insensitivity to the input pattern and a critical sensitivity
the composition in classes of the training set. To define
randomlike mode it is convenient to introduce the notion o
random predictor, that is, a device which makes random c
sifications according to a probability density function~PDF!
independent of the current input. The PDF specifies the p
ability pi

H , iP@1,ncl#, with which the predictor associate
the input pattern with classci .

A consistent definition of the efficiency of the network
a random predictor is the probabilityP that the random pre
diction is correct:

P5(
i51

ncl

pi
Api

H , ~1!

where thepi
A , iP@1,ncl# specify the actual distribution o

structures in the test set. Clearly, Eq.~1! provides an alter-
native expression of the prediction scoreQ whose genera
definition~see the Appendix!, at any rate, applies to any kin
of predictor.

Following @3# we argue that the perceptron working on
random mapping is equivalent to a random predictor,
some average sense to be soon discussed. Strictly spea
this equivalence is nonsense since the network is deter
istic; instead, it makes sense with the proviso that it holds
average and from the point of view of the success scorQ
@expressed as in Eq.~1!#.

To make this equivalence clear let us suppose that m
different training sets are formed by changing the individ
patterns, but keeping fixed their compositionpa

A ,pb
A ,pg

A and
the total number of patternsN. Now we train the perceptron
on them separately and measure the efficiencyQ on the same
testing set. Changing the training set hardly affects theQ
value of the peceptron, provided the learning set is su
ciently large@5,7#. Otherwise stated,Q will undergo minor
fluctuations around an average value; however, and here
the insensitivity to the input pattern, the unreliable patte
that are properly classified or misclassified vary upon cha
ing the training set. The reason for this is thatR noise has an
unpredictable~i.e., training-set-dependent! influence on the
classification of the unreliable patterns. In conclusion, o
Q and the number and identity of the reliable patterns
invariant with respect to the particular choice of the traini
set. On the contrary, as far as the unreliable patterns
concerned, only the number of the correctly classified inp
is constant on average. This implies that the exact cours
the unaveraged and rugged curve from which Fig. 2 has b
derived is unpredictable, whereas the smoothed curve
serves the same global information irrespective of the tra
ing set. For a perceptron the probabilitiespi

H are not givena
priori but are the outcome of the learning process. The
periment on the random mapping suggests that there sh
be some nonlinear functionF i relating pi

H to the composi-
tion of the training set, i.e.,pi

H5F i(pa
A ,pb

A ,pg
A). In Sec. IV

we make assumptions on the randomlike mode of the
ceptron in order to estimateF i .
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The experiment illustrated in Fig. 2 makes it apparent t
the perceptron trained on the random mapping exhibit
purely randomlike behavior and that its efficiency turns o
to conform to Eq.~1!. Under these conditions we have a
certained that not onlŷ og&.^oa&,^og&.^ob& but also
og
P.oa

P ,og
P.ob

P ,;P. This implies that the perceptron clas
sifies systematically the input in the most frequent classg,
that is to say pg

H51; from Eq. ~1! it ensues that
P5pg

A50.53. On the other hand, the same value obtain
we calculate the value ofQ as the fraction of correct guesse
~see Appendix!.

For mappings that are partially affected byR noise it is
reasonable to think that the overall behavior of the netw
is a hybrid of the Bayesian and the randomlike compone
The Bayesian mode prevails in the classification of theNr
reliable patterns, on which noise has only a minor effe
while the randomlike mode takes over when the percept
deals with theNu unreliable patterns. ClearlyN5Nr1Nu ,
whereN is the total number of patterns in the test set. To
aim of splitting the efficiencyQ in the contributions corre-
sponding to the two modes, we slightly modify the previo
partitionN5Nr1Nu of theN patterns into a new partition
N5N11N2. N1 andN2 are defined as the patterns that a
correctly predicted with unit probability and, respective
with probabilityP,1. The two partitions are quite closel
related to each other and would exactly coincide only in
limiting case of zero noise. This is suggested by the find
that patterns with increasing reliability are more and mo
surely assigned to the correct class, as is well exempli
below, in Table I. We take it that posingN1'Nr is quite a
good approximation since the discrepancies between the
partitions involve a tiny fraction of the whole set of pattern
By way of example,R noise may lead to the inclusion o
incorrect reliable patterns among theNr reliable ones; this is
likely to occur when the said test patterns have signific
overlap with patterns of the training set belonging to inc
rect structures. In the new partition this small set of patte
is removed fromNr and categorized inN

2. Similarly, the set
of unreliable and correct patterns is shifted from the set
theNu to the set of theN

1 patterns. With the aid of the new
partition we represent the behavior of the network as a
tistical mixture of the two modes;

Q5
N11N2P

N
, ~2!

whereP is the probability that theN2 patterns are correctly
classified when the perceptron operates as a randomlike
dictor. Equation~2! shows that both the randomlike comp
nent and the Bayesian component contribute to the efficie
of the perceptron in varying proportion according to the le
of noise. With maximumR noise, as in the conditions of th
random mapping, the Bayesian component is entirely s
planted by the random component@Q→P asN1→0 in Eq.
~2!#, whereas at zeroR noise the Bayesian component dom
nates (Q→1 asN1→N). It is clear that for Eq.~2! to be
strictly valid we must consider the partitionN1/N2: any-
how, in the sequel, we find it more convenient to use
approximationN1'Nr since dealing directly with reliable
or unreliable patterns makes it easier reasoning on
mechanism of computation in the presence of noise.
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IV. A STOCHASTIC MODEL FOR THE QUASIRANDOM
MODE OF THE PERCEPTRON

The PDF$pi
H% characterizing the randomlike compone

of the perceptron establishes by successive approxima
during the learning stage. The main goal of this section is
calculation of thepi

H . This will be done by proposing a
stochastic mechanism that simulates the randomlike mod
the perceptron as it classifies unreliable patterns.

We maintain that theNu patterns are exclusively contrib
uted by the strong mixing of subpatterns. The ground for t
is that under the typical working conditions, where the ge
eralization capabilities of perceptrons are stressed, the i
window sizeW is much larger than the correlation leng
among subpatterns. Then we are allowed to think of the
reliable input patterns as being made up of noncorrela
subpatterns. Accordingly, upon presentation of an unrelia
pattern, we consider then weightswi j (n5W) contributing
to the activation of thei th output neuron, as a random
sample where the probability thatwi j is picked up is speci-
fied by a distribution functionf i(wi j ); the distributionsf i
and f k ( iÞk) are assumed to be independent. Thus the inp
dependent part of the local field of each output neuron~see
Appendix! can be conceived as a random flight in the sp
of the weights terminating on the said neuron. The indep
dent random walks provide therefore an effective mechan
for the synthesis of theNu patterns and, to a good approx
mation, of theN2 patterns.

The probabilitiesf i(wi j ) are approximated by the histo
grams of the weightswi j linking the j th input neuron to the
i th output neuron. This approximation is mitigated by t
consideration that the precise analytical form of the functio
f i(wi j ) is immaterial to our model since, as we shall s
below, only the first two moments enter explicitly the fin
expression of$pi

H%.
The next step is the calculation of the sumFi of the n

weights for each class,

Fi5(
j
wi j , ~3!

that, in virtue of the binary input, represents the local field
the i th output neuron plus the thresholdu i @see Eq.~A1! in
the Appendix#. To this aim we think ofFi as a random walk
of n steps, whose magnitudes are chosen according to
probability f i(wi j ), with average^wi j & and variances i

2 .
Then the pertinent expression for the probability that
variableFi takes on the valueWi is @13#

Prob$FiP@Wi ,Wi1dWi #%

5~2pns i
2!21/2expH 2~Wi2n^wi j &!2

2ns i
2 J . ~4!

Therefore, assuming mutual independence of the varia
Wi , the joint probability thatn weights sum toWi ( i
P@1,ncl#) is

p0~WW !5)
i51

ncl

~2pns i
2!21/2expH 2~Wi2n^wi j &!2

2ns i
2 J . ~5!
ns
e
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For a three-output perceptron with output labe
i5a,b,g the probability that the network selects, say t
outputa, according to the winner-take-all rule~Appendix! is

pa
H5Prob$Wa2ua.Wb2ub ,Wa2ua.Wg2ug%

5E
2`

1`

dWaE
2`

Wa2ua1ub
dWbE

2`

Wa2ua1ug
p0~WW !dWg .

~6!

Using Eq.~5!, Eq. ~6! can be cast in the form

pa
H5Aqaqbqg

p3 E
2`

1`

dWaexp@2qa~Wa2A!2#

3E
2`

Wa2ua1ub
dWbexp@2qb~Wb2B!2#

3E
2`

Wa2ua1ug
dWgexp@2qg~Wg2C!2#, ~7!

where A5n^wa&, B5n^wb&, C5n^wg&, and
qi5(2ns i

2)21.
A more convenient form of Eq.~7! can be obtained by

means of the transformationWa2A5l,(Wb2B)Aqb5j,
(Wg2C)Aqg5h,

pa
H5Aqa

p3E
2`

1`

dl exp@2l2qa#

3FAp

2
erf@~l1A2B2ua1ub!Aqb#

1E
2`

0

exp~2j2!djG
3FAp

2
erf@l1A2C2ua1ug!Aqg]

1E
2`

0

exp~2h2!dhG . ~8!

The calculations forpb
H andpg

H run exactly in the same way
with a trivial permutation of the indices.

V. THE CASE OF PROTEIN STRUCTURE PREDICTION

Now we pass to applying the general considerations m
so far to the task of predicting the secondary structures
proteins. The sequencesSP andSC defining the mapping to
be learned are the sequence of protein primary struct
~residue sequences! and, respectively, the sequence of se
ondary structures assigned to any residue. The input wind
can arrangeW letters ~residues! at a time, and is shifted
alongSP as prescribed in Sec. II. Additional details concer
ing the protein structure task, other than those included
Sec. II, are relegated to the Appendix.

For the purpose of predicting protein secondary structu
the size of the input window, usually including 10–20 re
dues, is normally insufficient to account for long-range int



c

a
b

on

io

a
d

rn

o
ke
on
rn
le
a
r
nv
r
t t
he
on
xt
g
ea
ev
g
ur

be

to

ig

iv

gh

ilit

:
s
in

the
ove
n
ord-

fi-

r
-
re-
or
on-
the

ht
to

eo-
ake
main
ove

tic

till
ap-
om
um
ty.

55 7339NOISE AND RANDOMLIKE BEHAVIOR OF . . .
actions which play a significant role in determining the stru
ture of unreliable subpatterns@14,15#. Moreover, we can
assume thatI noise is negligible because the probability th
the same pattern occurs twice is negligible in the availa
data sets@16#.

R noise is well documented in the literature on predicti
methods of protein structures~see @17#, and references
therein! and is connected to the pseudorandom distribut
of several properties along the chain@16,18–20#. Hints to the
quasirandom characteristics of the sequence of proteins
to be found in the notion that real sequences have been
scribed as ‘‘slightly edited random sequences’’@20#. But
quasirandomicity of sequences~caused by strong subpatte
mixing! is only a prerequisite forR noise. The next ingredi-
ent is the substantial amount of unreliable patterns that, c
sistently with the definition given in Sec. III, are able to ta
different conformations depending on the particular envir
ment. Characterization and counting of unreliable patte
according to different criteria, are to be found, for examp
in @14,16#. In @21# experimental evidence is presented th
short equivocal sequences exhibit intrinsic preference fo
given secondary structure that may be overridden by e
ronmental influences. Such interactions may also be p
vided by the solvent or by distant residues that turn ou
have proximity relationships with the trait at hand within t
three-dimensional structure. This is the case of the str
modulation of theb-sheet propensity by the tertiary conte
@22#. Finally, R noise is signalled indirectly by the findin
that the protein structure mapping is characterized by w
correlations. This is suggested by the phenomenological
dence that multilayer perceptrons are no better than sin
layer perceptrons at classifying protein secondary struct
@23,24#.

Different degrees of unreliability of the patterns can
distinguished by means of the reliability indexr introduced
in @6# in the framework of a neural network approach
protein secondary structure prediction. For each patternP it
is a real number ranging in the interval@0, 1@ and is defined
as the absolute value of the difference between the two h
est outputso1

P ando2
P :

r5uo1
P2o2

Pu. ~9!

In this section our aim is to proceed to a semiquantitat
test of the model of Sec. IV by using our predictions ofa
helices,b sheets, and random coils@7#. The weights of the
perceptron after completion of the training stage~under the
working conditions described in the Appendix! are used to
construct three histograms, each one collecting the wei
converging on each output neuron~Fig. 3!.

From the histograms the parameters of the probab
function f i(wi j ) used in Eq.~4! are easily derived:̂wa&
50.10,sa

250.37, ^wb&50.01,sb
250.33, ^wc&520.16,

sc
250.35. The thresholdsu i have the following values

ua53.16, ub52.16, anduc522.77. Inserting these value
in Eq. ~8! and its analogs for the other structures, and fix
n5W517 we get pa

H50.223,pb
H50.116,pc

H50.661. By
means of Eq.~1! and the composition in structurespa

A , pb
A ,

andpc
A of the learning (L) and test (T) sets~see Appendix!,

we eventually estimatePL50.432 andPT50.417. Finally,
by using the experimental value@7# of the performance,
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Q50.658 forN511361 residues ofL62 ~see the first row of
Table I! we calculateNr54520 andNr /N539.8% from Eq.
~2!. The same procedure withQ50.628 forN56634 resi-
dues ofT33 leads toNr52400 andNr /N536.2%.

At this stage a semiquantitative check of our model of
random component can be made by comparing the ab
figures with theNr value obtained by direct counting. I
Table I we have sorted the patterns of the training set acc
ing to their reliability indexr defined in Eq.~9! and com-
puted the number of patternsNk with r>k
(k50,0.1,0.2,. . . ,0.9). Then we have measured the ef
ciencyQk by using the perceptron trained on the wholeL62
to predict theNk patterns.

Now it has been argued@25# that there exists an uppe
boundQ'0.8860.09 beyond which there is no point in fur
ther improving on the efficiency of secondary structure p
diction since identically folded conformations leave room f
about 12% fluctuations in the secondary structures. A reas
able conjecture is that those patterns that are predicted by
network with accuracy>0.88 are sufficiently reliable for
them to have strong intrinsic propensity toward the rig
structure. This property makes them eligible to correspond
the sought-for reliable patternsNr . Posing Nr'N(Q
50.88) in Table I, we get forL62 a valueNr'2000 and for
T33 Nr'700, that are in the same range as the above th
retical estimate. Note that the agreement is better if we t
into account that perceptrons tested on this same task do
tend to miss about 5% in performance so that the ab
threshold forQ is to be placed around 0.83@23#.

A. Noise and entropy of the protein structure mapping

In Sec. III A we have shown that the exact probabilis
meaning of the perceptron’s output is corrupted byR noise
although some remnant of probabilistic information can s
be found even in the limiting case of the randomized m
ping. Though one expects that the output deviates fr
p(ci uP), our experiments on real proteins show that the s
of the activities of the output neurons is very close to uni
The same kind of regularity has been reported in@5# for quite

TABLE I. The patterns of a typical learning setL62 and test set
T33 are here grouped according to their reliability index (r) @see Eq.
~9!#. N indicates the number of patterns withr not smaller than the
value in the first column.Q is the efficiency of prediction of each
subset of patterns when the perceptron is trained onL62.

L62 T33

r Q N Q N

0 0.658 11361 0.628 6634
0.1 0.695 9608 0.660 5610
0.2 0.730 8043 0.690 4717
0.3 0.763 6600 0.719 3909
0.4 0.792 5311 0.739 3193
0.5 0.820 4140 0.769 2449
0.6 0.847 3010 0.788 1805
0.7 0.872 1985 0.815 1219
0.8 0.909 1126 0.869 688
0.9 0.940 361 0.942 224
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FIG. 3. Normalized histograms of the weights converging on each of the three output neurons of the perceptron used to predicta, b, and
coil protein structures.
re
c
a

ur
an

ag
o

, in

t,
e

the
x-
it

s

different task domains and network architectures. This is
markable since there is no explicit constraint for this to o
cur. The averaged sums of the outputs for our standard tr
ing and test setsL62 and T33 ~see the Appendix! are,
respectively, 1.0570.11 and 1.0970.06 ~see Fig. 4!.

This property helps in devising an entropylike meas
for each patternP since the set of corresponding outputs c
be viewed approximately as a scheme~in information theo-
retic parlance@26#!. The usual expression

SP52 (
i5a,b,g

oi
Plnoi

P ~10!

provides a measure of reliability per single pattern. Aver
ing SP over the set ofN patterns gives an average entropy
the mapping
-
-
in-

e

-
f

S5(
P

SP/N. ~11!

S can be viewed as a measure of noise intensity that
our special condition of nearly zeroI noise~Sec. III!, can be
used as an indicator ofR-noise intensity. As a matter of fac
comparingS values of the artificial random mapping and th
real protein mapping@7# we verify thatSrandom50.96 and
SL50.67 andST50.69 for L62 and T33, respectively. Our
entropylike measure of the mapping reconstructed by
perceptron is also a useful indicator of the information e
tracted by the network during the training stage. Actually
decreases from the initial valueS50.96 ~of the perceptron
with randomly initialized weights! to the final values 0.67–
0.69 of SL and ST mentioned above. Consistently with it
ts
FIG. 4. The activations of the output units practically sum to one even in the presence ofR noise. The plot shows the sum of the outpu
(s) for the first 4000 patterns of a three-output perceptron performing on the test set of protein sequencesT33 ~see the Appendix!.
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meaning,S takes on smaller values for subsets with incre
ing values ofr. For instance, the small subset withr50.9
~see Table I! hasS50.30.

VI. DISCUSSION

The present investigation focuses on the behavior of p
ceptrons used to study noisy mappings within the gen
framework specified in Sec. II. Our main scope is to ma
more quantitative the general notion that noise blurs the
formation carried by each pattern and eventually leads
decline of the efficiency of classification. We have explor
the effect on the performance of the kind of noise that ari
when patterns, belonging to different classes, exhibit sign
cant overlap with pronounced mixing of subpatterns. T
major result of the present paper is the definition of a r
domlike regime of the perceptron, which is useful to estim
the performance as the network is confronted with noisy~un-
reliable! patterns. As far as the prediction score is concern
we have argued that in the presence of high noise the
ceptron works in randomlike mode and the determinis
computation performed by each output neuron is equiva
to a one-dimensional random walk on the available conn
tions. The ideal conditions for observing the stochastic
gime of the network are reproduced in the experiment of F
2 where a perceptron has been trained on a randomized
ping.

A suitable benchmark for the stochastic model propo
in Sec. IV is provided in Sec. V by our experiments of pr
tein structure prediction. The effect of noise on the perf
manceQ is most clearly seen by comparing the scores as
perceptron is tested on the same task but with different n
intensities. Actually, the performance in the task of pred
ing real protein structures~see Table I! is Qreal'0.63
20.66, whereas in the prediction of the random mapping
Fig. 2 it reduces toQrandom50.53. The introduction of an
average entropylike estimate of noise intensity in Sec. VA
a first step toward a quantitative correlation of noise a
performance. The average entropyS is derived from the pat-
tern entropySP that is reminiscent of similar structural en
tropies used in the literature~see, for example,@14#!. The
interesting novelty is thatSP is directly evaluated from the
output of the perceptron. The reduction fromQreal to
Qrandom correlates with the increase of noise fro
Sreal50.6720.69 toSrandom50.96. It is apparent that the un
reliable patterns are mostly responsible for the amoun
noise of the mapping; accordingly, they correspond to n
coding patterns with high pattern entropySP and cause the
folding code to be fuzzy and nonlocal. It is a distinctiv
feature of noncoding patterns that local interactions are
minor importance and that their structure is essentially de
mined by the tertiary context.

In Eq. ~2! the overall performance of the perceptron
split in two contributions and we have taken advantage
this representation to evaluate the numberNr of reliable pat-
terns~by virtue of the approximationNr'N1). Before dis-
cussing our estimates let us posit that we feel confiden
our results although it might seem questionable that we d
conclusions about the sequence-to-structure mapping on
ground of speculations made on the simplest possible fe
forward neural network. However, we maintain that the
-
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ferences made in the present paper are not seriously lim
in generality since the perceptron provides the maxim
possible information that can be extracted from the sing
residue sequence. Actually, in the structure classifica
task, multilayer perceptrons either hand designed or star
from scratch and statistical approaches do not improve on
performance of the perceptron@8,23,24#.

Some comments are in order as to the result of Sec
Nr /N535240%, as well as to the role of reliable patter
in protein folding. First we note that it is reasonable to ide
tify the reliable patterns with the coding residues of a prot
that have been searched for in different works on the fold
code. In@14# it has been estimated that 60–70 % of the fo
residue patterns are coding. The apparent discrepancy
our range is mainly due to the larger probability that no
affects the pattern owing to our larger input window. A fu
ther comparison can be made with the finding of simulatio
of the folding process@27#. The estimated value of 25% fo
the fraction of residues that presumably stabilize the fold
nucleus compares satisfactorily to our estimate; this mi
hint at the possible involvement of reliable patterns in t
formation of the folding nucleus, to the extent that this a
companies fast formation of elements of secondary struc
@28#. This is, however, an open problem which needs m
work to be definitely answered@28#, although the event tha
reliable patterns take part in the early stages of folding
consistent with their strong intrinsic propensities for the s
ondary native structure.

We are now in a position to answer the question whet
the essential uncertainty that affects the prediction of pro
secondary structures is due to the inadequacy of the ne
network approach or to intrinsic deficiencies of the mapp
under study. The above considerations about noise sug
that there is an unavoidable upper bound to the predictio
structures that is inherent to the mapping based on loca
formation and cannot be overcome by merely enlarging
data set. Our estimates of thepi

H indicate that the randomlike
component of the perceptron is polarized towards the m
abundant class~random coil!. This reproduces the exper
mental observation that perceptrons working on the pro
structure task overestimate the most abundant class~random
coil! and underestimate the less frequent classes (a helix and
b sheet! @7#. Thus it appears that the randomlike compone
of a perceptron trained on a real data set, similarly to
perceptron trained on a noisy mapping, is driven by gene
pieces of information such as the composition in structu
of the training set.

Finally, our analysis gives useful suggestions as to
best conditions for studying noisy mappings. In particul
we are able to rationalize the common strategy to use
anced training sets@7,25#. Actually, using training sets with
quite similar fractions of the different structures amounts
reducing the effectiveness of the randomlike component
to favor the emergence of reliable patterns. The overall e
ciencyQ may happen to slightly decline while the number
correct guesses is much more uniformly distributed amo
the classes. Correspondingly, the overestimation of the m
abundant class and underestimation of the less abun
structures is sensibly reduced@7#. This improves in particular
the prediction of the underrepresentedb patterns.
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APPENDIX

In this appendix we give the full details concerning t
perceptron architecture as well as the data base used to
with the particular task of protein structure prediction illu
trated in Sec. V. In this task domain the mappingMW goes
from the space of primary sequences~residue sequences! to
the space of secondary structures described in terms o
three major classesa helix, b sheet, and random co
(ncl53). The input code envisages now one letter for ea
residue of the primary structure. For proteins the natu
choice for the orthonormal binary code~see Sec. II! is
NS520, each position within the 20-tuple corresponding
one of the 20 possible amino acid residues. The input laye
designed to read patterns of 17 residues at a time (W517)
and contains 173205340 input neurons.

The relevant information on the 62 proteins of the traini
set L62 is drawn from the Brookhaven Protein Data Ban
For the sake of having results as homogeneous as possib
those reported in the literature, the set has substantial ove
with the sets used in most of the papers devoted to the
diction of protein structures. The labels of the individual pr
teins are listed in@7#. The pertinent information on eac
protein includes the residue sequence and the atomic co
nates of the crystallized protein. Assignment of the seco
ary structure of each protein is done by processing the am
acid sequence with theDSSPprogram described in@29#.

The learning setL62 has 11 361 residues and the follow
ing composition in structures:pa

A 5 0.25, pb
A 50.22, and

pcoil
A 5 0.53. The testing setT33 comprises 6634 residues

with pa
A 5 0.28, pb

A 5 0.22, andpcoil
A 5 0.50. The feed-

forward network we have used is a perceptron with a sin
layer of adjustable weights. The output layer has three r
valued neurons with activation values in the range#0,1@, each
coding for one of the three structures predicted. The non
s
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ear transfer function associated with each output neuronc is

(11e2ac
P
)21, whereac

P is the local field defined by

ac
P5 (

i51

WNS

wciI i
P2uc , ~A1!

I i
P being the activation value~either 1 or 0! of the i th input
neuron corresponding to patternP and uc the adjustable
threshold of thecth output neuron. The output turns out to b
oc
P5 f (ac

P).
The output is interpreted according to the winner-take

rule; this amounts to identifying the prediction of the ne
work with the class corresponding to the output neuron w
the highest activation. The learning algorithm is the stand
backpropagation@30# which is operated with a learning rat
d5 0.01. Initial values of the weights are chosen random
from the uniform distribution in the range@21022,1022#.

Two alternative learning strategies are usually envisag
The first scheme~batch updating! prescribes that the weight
undergo a one-shot change each time the network
scanned the whole training set. The function to minimize
the cumulative deviation from the desired outputdc

p ,

E5(
p
E~P!5(

P
(
c

~oc
P2dc

P!2. ~A2!

The second scheme dictates that the weights are corre
after each pattern presentation~pattern updating!, the error
function being the functionE(P) of Eq. ~A2!. The latter
procedure was used in the predictions of protein structu
mentioned in Sec. V. The learning process is stopped w
the fractional change of the error function per cycle is le
than 531024. Throughout this paper we measure the perf
mance of the network in terms ofQ, defined as the ratio o
the correct guesses to the total number of patternsN classi-
fied.
.
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