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Noise and randomlike behavior of perceptrons: Theory and application
to protein structure prediction
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In the first part of this paper we study the performance of a single-layer perceptron that is expected to
classify patterns into classes in the case where the mapping to be learned is corrupted by noise. Extending
previous results concerning the statistical behavior of perceptrons, we distinguish two mutually exclusive kinds
of noise ( noise andR noise and study their effect on the statistical information that can be drawn from the
output. In the presence bfoise, the learning stage results in the convergence of the output to the probabilities
that the input occurs in each clagsnoise, on the contrary, perturbs the learning of probabilities to the extent
that the performance of the perceptron deteriorates and the network becomes equivalent to a random predictor.
We derive an analytical expression for the efficiency of classification of inputs affected by Rtnosige. We
argue that, from the standpoint of the efficiency score, the network is equivalent to a device performing biased
random flights in the space of the weights, which are ruled by the statistical information stored by the network
during the learning stage. The second part of the paper is devoted to the application of our model to the
prediction of protein secondary structures where one has to deal with the effdRtaa$e. Our results are
shown to be consistent with data drawn from experiments and simulations of the folding process. In particular,
the existence of coding and noncoding traits of the protein is properly rationalized in terRsofe
intensity. In addition, our model provides a justification of the seeming existence of a relationship between the
prediction efficiency and the amount Bf noise in the sequence-to-structure mapping. Finally, we define an
entropylike parameter that is useful as a measur@ obise.[S1063-651X97)02004-7

PACS numbd(s): 87.10+e

[. INTRODUCTION tionships between the statistical information extracted by the
network and the characteristics of some test mappings. The
The present paper belongs to the mainstream of researstery notion of a perceptron as a device sensitive to statistical
that focuses on the statistical aspects of learning in neurdéatures alludes to the capability of feed-forward nets to
networks(for a review se¢1,2]); our main scope is to clarify record information in the form of Bayesian probabilities
their capability to detect statistical information in the learn-[3—5]. However, storage of probabilistic information can be
ing set. Emphasis on these aspects is motivated by the coperturbed by a kind of noisé}(noise that was not taken into
sideration that in many cases of practical interest neural neccount so far. We suggest that for patterns substantially
works detect statistical features of the problem under studyaffected byR noise, the network can be likened to a random
We limit our investigation to the simplest feed-forward neu-classifier as far as the efficiency of prediction is concerned.
ral networks, viz., the single-layer perceptrons, on whichThe performance can be evaluated by modeling the compu-
analytical considerations can be carried out with relativetation of each output neuron as a random walk in the space
ease. From now on, for simplicity, the single-layer percep-of the weights, where the probability of the individual steps
tron will be referred to as the perceptron. is dictated by the statistical information stored in the weights
Our starting point is the notion that pattern overlap isconverging onto the output neuron at hand. Under these con-
simultaneously the strength and the weakness of perceptronitions the perceptron is said to operate in randomlike mode.
used as classifiers. In point of fact overlap promotes classifhe main part of the paper is devoted to the full character-
fication of never-seen-before inputs but, at the same timdzation of the randomlike behavior of a perceptron as it is
generates noisg3] that poses limitations to the accuracy of faced with a noisy mapping.
classification. Generally, neural networks are used to build A case in point is the primary-to-secondary structure map-
an artificial mapping linking the end states of processes thagting of proteins that is studied by means of perceptrons in
are too complex for being extensively simulated or theoretithe second part of the present work. As a matter of fact, a
cally investigated. In this context, beside using the networkmore specific motivation for the present investigation is the
as a black box, it might be desirable to fully exploit the urgent need for a clarification of the limiting factors that
information captured by the network during the training affect the efficiency of prediction of protein secondary struc-
stage. In view of the application of the network to an un-tures[3,6—8. Some puzzling problems arise in the context of
known mapping, these pieces of information may be helpfuthis application and demand proper explanation: on the one
to get better insights into the problem at hand. To this aimhand, the finding that perceptrons are as effective as predic-
we devote the first part of the paper to inquiry on the relators based on statistical methods and, on the other hand, the
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sensitivity of the network to the number of examples in each0,1[; collectively they form am-dimensional output vec-
class(i.e., approximately the frequency of occurrence of in-tor 6=(0,,0, 0, ) (see the Appendix We use the
1 LA | Cl

pm_l‘f'hm e?Ch C:,a?: ather than tt?\ spfe(I:llflc'patt(Trnz " winner-take-all strategysee the Appendijxto extract the fi-
q 'eb P ;n ot the pap:ﬁr IS twe ko'owmg. tnd teCII Wel nal classification from the actual output of the network. The
escribe the mapping the network IS expected 1o leam. li}veights of the network are randomly initialized and itera-

tShec. ”ll< we classﬁy_the \7\;)rttshof n0|s|e .th‘?rt] potentially affecfttively corrected by the standard error backpropagation algo-

€ dun ?Ewn mapplngi th et' eg ex;l)va[n € darl)pgarance (t) hm (see the Appendjx These specifics are sufficient to
randomiike component that in Sec. TV 1S modeled as a Set Gy ce the general arguments and the model of Sec. IlI
concurrent random walks and arrive at an analytical expre

S_ . . .
) . and Sec. IV. For a more complete description of the archi-
sion for the network to predict each class. In Sec. V we P P

L . ) > tecture of the network within the context of the prediction of
specialize our con_5|derat|ons o the prediction Of. SeConda‘risrotein secondary structures, the reader is referred to the Ap-
structures of proteing7,9—11. Data from our previous ex- '

periments in this area are then used to make a semiquantitg?ndlx'

tive check of the theoretical predictions of Sec. IV. The re-

sults of our simulations suggest the introduction of an lll. CLASSIFICATION OF NOISE
entropylike measure of the single-pattern ambiguity, as well
as a global measure of intensity of the noise affecting th(-;-Su

sequence-to-structure mapping. Finally, in the concIustNe distinguish two kinds of noise which we term intrinsic
section, we point out the bearings of our model on the fold-noise ( noise and representational nois& (oise. | noise

ing code and the folding mechanism of globular proteins._ . hen th o . lanDi -
Moreover, the limited performance of the network is tracedarlses when the training set contains nonoverlapping ambigu

back to the intensity of noise and to the noise-induced ran(-)us patterns, Le., pattemns that_on_ distinct oceurrences are
domlike behavior of the perceptron. This allows us to drawplasaﬂed in d.|ffe.rent classes. Thls kind of noise is plue to the
conclusions as to the optimal Iearﬁing strategy in the pres'—nherent ambiguity of thg mappmg/tw_(the supgrwsc}r I
ence of noise noise usually_reflects the inadequate size of the mput window
' such that typical markers of some patterns are missed.

R noise is a side effect of the single-letter orthonormal
Il. GENERAL FEATURES input code in that it arises as a consequence of the overlap
OF THE CLASSIFICATION TASK among patterns associated with different classes. Therefore it
happens that the same subpattern is alternatively classified in
"Yifferent classes as it occurs within different input patterns.

into th e ol The classification discrimi tsConciser,R noise is none other thdnnoise that affects one
INto the appropriate class. fhe classilication discminatey .o subpatterns rather than the whole pattern.

amongng, classes which will be labeled with greek letters It follows that on processing an input pattern affected by

To make this paper self-contained, it is convenient to
mmarize the results of our previous work. Follow{ryj

tC;{ B, 7{ .f. . Mprtg forémally,fthe mapplng\/l\?, cglnsstsl of R noise(ambiguous pattejnthe perceptron has to weigh the
€ Set of associalionts; — ¢y from a space of o jectalso simultaneous contributions of subpatterns that are no longer
referred to as input pattetns? = {P;} to an

unanimous in indicating the same class. This kind of ambi-
) ; guity originates eventually the randomlike behavior of the
jectsP; are strings oV Ietterls grawn frV(\)Im an alphabgtof  oyork that is described in Sec. Il A. Clearly, a prerequisite
Ns symbols; formally,P;={lj 17, ... I]"}. By a subpattern ¢ g noise to be present is the mixing of subpatterns; in the
of P; we mean any subset & ; patternsP, andP, sharing  |imjt of increasingR noise intensity, correlations among the
subpatterns of any length, i.e., such that for sdnte=1;, |etters forming the input patterns are progressively weakened
are said to be overlapping. (see, for instance, Sec.)VLet us remark that there may be
The clas refers to the letter falling in the central posi- gverlap withoutR noise, when all the subpatterns point to the
tion within the input window of sizeV. The training set same class. Finally, it is worth noting that occurrenceRof
My is given in the form of two corresponding sequencesnpise depends on the input code: actually, one can always
Sp={l1.l2,13, ...} (ljeA) and Sc={cy,cz,C3,...},Ci  devise a new input code that nullifies overlap between the
eC. The input window is shifted letter by letter until the representations of any two patterns which, consequently,
whole sequenc&y has been scanned. In any case the theorynight be affected only by noise. However, it would be
developed in the sequel is by no means restricted to thigrroneous to conclude that it is desirable to get ridRof
specific rule of pattern production. As far as the single-letteoise; overlap, in fact, is the very basis of the generalization
code is concerned, there exists a 1:1 correspondence betwegipability of perceptronéas well as of other sorts of neural
any letterl; and the components of &s-dimensional binary  networks. In the following, for want of any specifications,

vector, having all components set to zero but the one corraye shall use the term noise to refer to the joint effect of
sponding to the desired lettéorthonormal code This code  noise andR noise.

lends itself to creating an unbiased correspondence between
the set of the possible letters and a set of labels each having
non-nil overlap only with itself. On the whole there are

WX Ng input neurons that take discrete valyésl} accord- It is clear that were the mapping noiseless and were the
ing to whether they are activated or not. Each class is reprewveights initially set to zero, the unambiguous rule of asso-
sented by a single neuron in the output layer. Output neuronaiation of any patterP to classc; would cause the percep-

have continuous and real-valued activations ranging iriron to generate asymptotically a binary 0/1 output, the only

n¢-dimensional space of classés{«,B,y, ...}. The ob-

A. Noise intensity and perceptron’s response
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FIG. 2. Dependence of the average outputs on the composition

FIG. 1. Comparison of pattern frequencies with the outputs of an classes of the training set. The plot shows the output of a three-
perceptron that has completed a 100 cycle training phase with oeutput perceptron upon presentation of the patterns of the training
thonormal code and pattern updating. The plot shows that the actset, after completion of the learning phase on a random mapping
vation levelso” (O) of a generic output neuroa asymptotically  (following the usual procedure described in the Appehdfo per-
approach the relative frequencie$ (®) of each input pattert®. form this test we broke up the original letter sequefSgeinto 62
The training set comprises 20 different patterns that are conventioriraits (indicated with numerals on the abscissad calculated the
ally indicated with letters on the abscissa. Analogous behavior i@verage activatiofo;), i = a, 8, v, of the output neurons over each
exhibited by all of the output neurons, irrespective of their numbertrait (marked, respectively, a®,/A,®). The traits correspond to
the 62 proteins composing the training 46 described in the
Appendix. The plots show small fluctuations around mean values

- - . . Sthat closely reflect the probabilitigs* with which the random as-
¢; . Distinguishing patterns as ambiguous and unambiguouggyment to each class has been made in building up the training

is feasible if the mapping is known,; yet this is usually not theggt | this examplep”=0.25p4=0.22p%=0.53. The average
case and, in addition, it may be desirable to replace thigalues and standard deviatiotevaluated over the 62 traits of the
all-or-none distinction with a new continuous criterion. Thetraining set turn out to be (0,)=0.24+0.01(0p)
idea is to rank patterns according to the distance of the cor=0.23+0.01(0,)=0.52+0.01.

responding outputs from thé-like output of strictly unam-

biguous patterns. A reliability scale obtains which is useful Also pureR noise is the cause of unreliable classifica-
to discriminate between reliable and unreliable patternstions, although the probabilistic meaning of the network’s

Qualitatively, the output vect06=(o o ) of areli- output cannot be any longer deciphered so easily skice
able patterr; is strongly peaked é n Zany class ie noise interferes with the storage of Bayesian probabilities.

. ) As a matter of fact it has been noted that estimation of Baye-
o=~ 8y, Whereas the typical output of unreliable patterns

) . o sian probabilities is better when one output dominates over
exhibits non-negligible spread of the activations on morg,o otherg 5] (this is the case of reliable pattejn¥he per-

output neurons. A measure of pattern reliability is introducedturbing effect of R noise can be seen most clearly in the

in Sec. V and generalized in Sec. VA. _ limiting case of strong R noise. Expectedly,
Now we turn to characterizing the modes of operation Ofp(ci| P)— p(c;), wherep(c;) is the probability that class;

the perceptron as a function of the intensitied aoise and  js predicted oblivious of the pattei.

R noise. When the mapping is affected bypoise the mean-  We can simulate this case by resorting to a random map-

ing of the outputo is susceptible to analytical investigation ping that is defined by associatir® (see Sec. )l with a

[4,5,17. It turns out that under batch updatifgee Appen- random sequencg:. Randomization has the ultimate effect

dix) the backpropagation algorithm ensures the conditiorof maximizing the intensity oR noise. A realization of this
of— v(c;|P)~p(ci|P) wherev andp are the relative fre- experiment on a version of the general problem described in

quency and, respectively, the probability of finding patternS€c- Il is illustrated in Fig. 2, witf={a, B, 7}. Sp is the set
P in classc;. In the rest of the paper we use superscRpt of amino acid sequences introduced in Sec. V, where it is
whenever it is necessary to emphasize the dependence of tAEgued that it provides a well mixed set of symbolic subpat-
parameter in question on the patténWhen the corrections €MS-Sc is generated by sampling the seof the possible

of the weights are accomplished according to the alternativélasses according to assigned priori probabilities
pattern updating procedutsee Appendix the convergence Pa.Pg.P, - First, we order sequentially the input patterns by
theorem does not apply; nonetheless we have experimentalfpeans of a label, and plot the outputs;' as a function of
verified that the learning algorithm still reproduces patternk. If we now smooth out the resulting rugged curve by cal-
probabilities(see Fig. 1 Thus, in the event the network is culating local averagego;), we get the plot of Fig. 2. The
faced with a mapping affected Bynoise, we are allowed to interesting outcome is that although the network is no longer
define a first mode of operation of the perceptron that will beable to record any statistical regularities per individual pat-
referred to as Bayesian or pattern-sensitive mode, since tHern, (o;) reflect the extant piece of information carried by
information stored by the network relates to the specific in-Myy, i.e., the relative abundance of examples per each class

put pattern. in the training setp’y,pj.p’.



55 NOISE AND RANDOMLIKE BEHAVIOR OF ... 7337

The limiting case just discussed illustrates a mode of clas- The experiment illustrated in Fig. 2 makes it apparent that
sification (randomlike modg which is antithetical to the the perceptron trained on the random mapping exhibits a
Bayesian mode. The most striking departure from the Bayepurely randomlike behavior and that its efficiency turns out
sian mode consists in the network exhibiting, in a senseto conform to Eq.(1). Under these conditions we have as-
insensitivity to the input pattern and a critical sensitivity to certained that not onlyo,)>(0,),(0,)>(0g) but also
the composition in classes of the training set. To define th©5>oz,o';> OZ,VP. This implies that the perceptron clas-
randomlike mode it is convenient to introduce the notion of asifies systematically the input in the most frequent class
random predictor, that is, a device which makes random claghat is to say p';'zl; from Eg. (1) it ensues that
sifications according to a probability density functi®®DF) 11— pA=0.53. On the other hand, the same value obtains if
independent of the current input. The PDF specifies the probe calculate the value @ as the fraction of correct guesses
ability pI*, i e[1,n], with which the predictor associates (see Appendix
the input pattern with class; . N For mappings that are partially affected Bynoise it is

A consistent definition of the efficiency of the network as reasonable to think that the overall behavior of the network
a random predictor is the probabilify that the random pre- s a hybrid of the Bayesian and the randomlike component.

diction is correct: The Bayesian mode prevails in the classification of khe
n reliable patterns, on which noise has only a minor effect,
cl . .
HZE pApH (1) while the randomlike mode takes over when the perceptron
= deals with theN, unreliable patterns. Clearlji=N,+N,,

whereN is the total number of patterns in the test set. To the
aim of splitting the efficiencyQ in the contributions corre-
sponding to the two modes, we slightly modify the previous
partition N=N, + N, of the N patterns into a new partition
N=N*+N".N* andN~ are defined as the patterns that are
correctly predicted with unit probability and, respectively,
: . with probability IT<1. The two partitions are quite closely
Following [3] we argue that the perceptron working on 4 elated to each other and would exactly coincide only in the

random mapping is ?qutl)valent tg_ a randdonétpr(teldlctor, llnlimiting case of zero noise. This is suggested by the finding
Some average sense 1o be soon discussed. Strictly speaking,, patterns with increasing reliability are more and more
this equivalence is nonsense since the network is determ

in- . . e
istic; instead, it makes sense with the proviso that it holds %urely assigned to the correct class, as is well exemplified

OrE) . . PP . .

. : elow, in Table I. We take it that posifg™ ~ N, is quite a
average and frpm the point of view of the success se@re good approximation since the discrepancies between the two
[expressed as in Eql)].

. X artitions involve a tiny fraction of the whole set of patterns.
To make this equivalence clear let us suppose that man

. L . e y way of exampleR noise may lead to the inclusion of
dnT?rent tLa'?'Eg S.ets z]ire ;otrrr]n(_ed by Chaf.‘tg'%g t,t'e Td'vt'jdualincorrect reliable patterns among tNe reliable ones; this is
pha ernsl, u beeplfng Ixed their composi Iph,pB,py an likely to occur when the said test patterns have significant
the total number of patterrts. Now we train the perceptron o erjan with patterns of the training set belonging to incor-
on them separately and measure the effici€pon the same

. : - rect structures. In the new partition this small set of patterns
testing set. Changing the training set hardly affects @€ g removed fromN, and categorized it ~. Similarly, the set

value of the peceptron, provided the learning set is suffiu¢ \ynreliable and correct patterns is shifted from the set of
ciently large[5,7]. Otherwise statedQ will undergo minor the N,, to the set of the\™ patterns. With the aid of the new

fluctuations around an average value; however, and here II?artition we represent the behavior of the network as a sta-
the insensitivity to the input pattern, the unreliable patterng;qtical mixture of the two modes:

that are properly classified or misclassified vary upon chang-

ing the training set. The reason for this is tRahoise has an Nt +N"II

unpredictable(i.e., training-set-dependeninfluence on the Q= - N 2
classification of the unreliable patterns. In conclusion, only

Q and the number and identity of the reliable patterns argyherell is the probability that thé~ patterns are correctly
invariant with respect to the particular choice of the trainingdassified when the perceptron operates as a randomlike pre-
set. On the contrary, as far as the unreliable patterns awgictor. Equation(2) shows that both the randomlike compo-
concerned, only the number of the correctly classified inputsent and the Bayesian component contribute to the efficiency
is constant on average. This implies that the exact course @ the perceptron in varying proportion according to the level
the unaveraged and rugged curve from which Fig. 2 has beeg¥ noise. With maximunR noise, as in the conditions of the
derived is Unpredictable, whereas the smoothed curve Preandom mapping' the Bayesian Component is entire|y sup-
serves the same global information irrespective of the trainplanted by the random compondi@— IT asN*—0 in Eq.

ing set. For a perceptron the probabilitig are not givera  (2)], whereas at zerR noise the Bayesian component domi-
priori but are the outcome of the learning process. The exnates Q—1 asN*—N). It is clear that for Eq(2) to be
periment on the random mapping suggests that there shoulirictly valid we must consider the partitiod™/N~: any-

be some nonlinear functio®; relatingp* to the composi- how, in the sequel, we find it more convenient to use the
tion of the training set, i.ep'=®;(p}.p5.p%). In Sec. IV approximationN*~N, since dealing directly with reliable
we make assumptions on the randomlike mode of the pemr unreliable patterns makes it easier reasoning on the
ceptron in order to estimat®; . mechanism of computation in the presence of noise.

where thepiA, ie[1,n.] specify the actual distribution of
structures in the test set. Clearly, E@) provides an alter-
native expression of the prediction scagewhose general
definition (see the Appendjx at any rate, applies to any kind
of predictor.
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IV. A STOCHASTIC MODEL FOR THE QUASIRANDOM For a three-output perceptron with output labels
MODE OF THE PERCEPTRON i=a,B,y the probability that the network selects, say the

The PDF{p™} characterizing the randomlike component outpute, according to the winner-take-all ru{@ppendiy is

of t.he perceptrc_)n establishes by_successive. apprqxim_ationspg: Prof{W,— 0,>Wg— 05, W, — 0,>W,— 6.}
during the learning stage. The main goal of this section is the
calculation of thep!. This will be done by proposing a (™ Wo— 0,7t 0p Wo=0a+ 0y
stochastic mechanism that simulates the randomlike mode of — | __ dw, . dW _ Po(W)dW, .
the perceptron as it classifies unreliable patterns.

We maintain that thé&l, patterns are exclusively contrib- (6)

uted by the strong mixing of subpatterns. The ground for thig, . .
is that under the typical working conditions, where the gen-ﬁJSIng Eq.(5), Eq. (6) can be cast in the form

eralization capabilities of perceptrons are stressed, the input
window sizeW is much larger than the correlation length pH= /q“ngy
among subpatterns. Then we are allowed to think of the un- ™
reliable input patterns as being made up of noncorrelated W, 0+ 0
subpatterns. Accprdlngly, upon presentation of an un.rellable xf dWgexd — qz(Ws— B)?]
pattern, we consider the weightsw;; (n=W) contributing —o
to the activation of theith output neuron, as a random W.—p.+8
;ample whgre _the_probabili.ty that; is pickeq up is_ speci- Xf o Ya ydwyexr[—qy(Wy— c)?], 7)
fied by a distribution functiorf;(w;;); the distributionsf; —o
andf (i #k) are assumed to be independent. Thus the input-
dependent part of the local field of each output neusee ~ Where 5 j\zn(Wa), B=n(wg), C=n{w,), and
AppendiX can be conceived as a random flight in the spac&i:(znai) : ) )
of the weights terminating on the said neuron. The indepen- A more convenient form of Eq(7) can be obtained by
dent random walks provide therefore an effective mechanisrneans of the transformatiow, —A=X\,(W;—B)\0z=£,
for the synthesis of thé\, patterns and, to a good approxi- (W,—C)Vad,= 7,
mation, of theN™ patterns.
The probabilitiesf;(w;;) are approximated by the histo- H_ /%JWd)\ exd —\2q,]
grams of the weightsy;; linking the jth input neuron to the Pa ) e
ith output neuron. This approximation is mitigated by the
consideration that the precise analytical form of the functions
fi(w;;) is immaterial to our model since, as we shall see
below, only the first two moments enter explicitly the final
expression ofp!}. 0 5
The next step is the calculation of the sufp of then + jﬁxexp(—g )dé
weights for each class,

+ 00
dW,ex — 0a(W,—A)?]
4

N
X 7erf[()x+A—B— 0,1 0p) \/q—,;]

X gerf[)\JrA—C— 0,+0.,)a,]

Fi:; Wij 3

0
+f7x6><p(—772)d77 : (8

that, in virtue of the binary input, represents the local field of
the ith output neuron plus the threshaofil [see Eq.(Al) in

the Appendi}. To this aim we think of; as a random walk The calculations fopz and p'; run exactly in the same way
of n steps, whose magnitudes are chosen according to theith a trivial permutation of the indices.

probability f;(w;;), with average(w;;) and varianceo? .

Then the pertinent expression for the probability that the v, THE CASE OF PROTEIN STRUCTURE PREDICTION

variableF; takes on the valu®V; is [13] _ ) )
Now we pass to applying the general considerations made

Prob(F; e [W; ,\W;+dWT} SO far to the task of predicting the gepondary struptures of
proteins. The sequenc&s andS; defining the mapping to
be learned are the sequence of protein primary structures
]' (4) (residue sequencesnd, respectively, the sequence of sec-
ondary structures assigned to any residue. The input window

Therefore, assuming mutual independence of the variabldg@n arrangew letters (residues at a time, and is shifted

W,, the joint probability thatn weights sum toW, (i alongSp as prescribed in Sec. Il. Additional details concern-

el[,ln ) is ' ing the protein structure task, other than those included in
ilc

Sec. Il, are relegated to the Appendix.
Nel (Wi 2 For the purpose of predicting protein secondary structures
po(W)ZH (anaiz)llzexp[ (Wi ”<2Wij>) } (5) the size of the input window, usually including 10-20 resi-
i=1 2no; dues, is normally insufficient to account for long-range inter-

— (W, —n({w;;))?

2n0i2

=(27-rnoi2)1’2exp{
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actions which play a significant role in determining the struc-Q=0.658 forN=11361 residues dfg, (see the first row of
ture of unreliable subpatterrd4,15. Moreover, we can Table |) we calculateN,=4520 andN, /N=39.8% from Eq.
assume thalt noise is negligible because the probability that(2). The same procedure wit®=0.628 forN=6634 resi-
the same pattern occurs twice is negligible in the availablelues ofT43 leads toN,=2400 andN, /N=36.2%.
data set$16]. At this stage a semiquantitative check of our model of the
R noise is well documented in the literature on predictionrandom component can be made by comparing the above
methods of protein structureésee [17], and references figures with theN, value obtained by direct counting. In
therein and is connected to the pseudorandom distributiorTable | we have sorted the patterns of the training set accord-
of several properties along the chir6,18—2Q. Hints to the  ing to their reliability indexp defined in Eqg.(9) and com-
guasirandom characteristics of the sequence of proteins apgited the number of patternsN,  with p=k
to be found in the notion that real sequences have been d¢k=0,0.1,0.2,...,0.9). Then we have measured the effi-
scribed as “slightly edited random sequencel20]. But  ciency Q, by using the perceptron trained on the whbig
quasirandomicity of sequencésaused by strong subpattern to predict theN, patterns.
mixing) is only a prerequisite foR noise. The next ingredi- Now it has been arguef@5] that there exists an upper
ent is the substantial amount of unreliable patterns that, corsoundQ~0.88+0.09 beyond which there is no point in fur-
sistently with the definition given in Sec. IlI, are able to takether improving on the efficiency of secondary structure pre-
different conformations depending on the particular environdiction since identically folded conformations leave room for
ment. Characterization and counting of unreliable patternsabout 12% fluctuations in the secondary structures. A reason-
according to different criteria, are to be found, for example.able conjecture is that those patterns that are predicted by the
in [14,16. In [21] experimental evidence is presented thatnetwork with accuracy=0.88 are sufficiently reliable for
short equivocal sequences exhibit intrinsic preference for ghem to have strong intrinsic propensity toward the right
given secondary structure that may be overridden by envistructure. This property makes them eligible to correspond to
ronmental influences. Such interactions may also be prothe sought-for reliable patterndN,. Posing N,~N(Q
vided by the solvent or by distant residues that turn out to=0.88) in Table I, we get fot ¢, a valueN,~ 2000 and for
have proximity relationships with the trait at hand within the T, N, ~700, that are in the same range as the above theo-
three-dimensional structure. This is the case of the strongetical estimate. Note that the agreement is better if we take
modulation of the3-sheet propensity by the tertiary context into account that perceptrons tested on this same task domain
[22]. Finally, R noise is signalled indirectly by the finding tend to miss about 5% in performance so that the above

that the protein structure mapping is characterized by weathreshold forQ is to be placed around 0.§23].
correlations. This is suggested by the phenomenological evi-

dence that multilayer perceptrons are no better than single-
layer perceptrons at classifying protein secondary structures
[23,24]. In Sec. llIA we have shown that the exact probabilistic

Different degrees of unreliability of the patterns can bemeaning of the perceptron’s output is corruptedRoyoise
distinguished by means of the reliability indgxintroduced  although some remnant of probabilistic information can still
in [6] in the framework of a neural network approach tobe found even in the limiting case of the randomized map-
protein secondary structure prediction. For each pafeiin  ping. Though one expects that the output deviates from
is a real number ranging in the intenj@, 1 and is defined p(c;|P), our experiments on real proteins show that the sum
as the absolute value of the difference between the two highef the activities of the output neurons is very close to unity.
est outputsof and 05: The same kind of regularity has been reportefbiifor quite

A. Noise and entropy of the protein structure mapping

= |0§_ 0§|- ©) TABLE I. The patterns of a typical learning seg, and test set
Tz are here grouped according to their reliability indg) [see Eq.
In this section our aim is to proceed to a semiquantitativeg)]. N indicates the number of patterns wjsmot smaller than the
test of the model of Sec. IV by using our predictionsdf value in the first columnQ is the efficiency of prediction of each
helices, 3 sheets, and random coilg]. The weights of the subset of patterns when the perceptron is trainetl gn
perceptron after completion of the training stageder the

working conditions described in the Appengliare used to Leo Tas
construct three histograms, each one collecting the weights
converging on each output neurdfig. 3). p Q N Q N
From the histograms the parameters of the probabilityy 0.658 11361 0.628 6634
function f i(wij) used in Eq.(4) are easily derived{w,) g1 0.695 9608 0.660 5610
=0.10, 0, 2=0.37,(wp)=0.01,05=0.33,(W;)=-0.16, q> 0.730 8043 0.690 4717
=0. 35 The thresholds 6, have the following values: g3 0.763 6600 0.719 3909
0 —3 16, 65=2.16, andd.= —2.77. Inserting these values g 4 0.792 5311 0.739 3193
in Eq. (8) and its analogs for the other structures, and fixingg 5 0.820 4140 0.769 2449
n=W=17 we getp};=0.223p,;=0.116p'=0.661. By 0.6 0.847 3010 0.788 1805
means of Eq(1) and the composition in structur@@, pﬁ, 0.7 0.872 1985 0.815 1219
and pC of the learning ) and test T) sets(see Appendix 0.8 0.909 1126 0.869 688
we eventually estimatél, =0.432 andll;=0.417. Finally, 0.9 0.940 361 0.942 224

by using the experimental valug’] of the performance,
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FIG. 3. Normalized histograms of the weights converging on each of the three output neurons of the perceptron useddo fraaidt
coil protein structures.

different task domains and network architectures. This is re-

markable since there is no explicit constraint for this to oc- s=2 SPIN. (12)

cur. The averaged sums of the outputs for our standard train- F

ing and test setd g, and Ts3 (see the Appendix are,

respectively, 1.050.11 and 1.090.06 (see Fig. 4. S can be viewed as a measure of noise intensity that, in
This property helps in devising an entropylike measureour special condition of nearly zetonoise(Sec. Ill), can be

for each patteriP since the set of corresponding outputs canused as an indicator ¢&t-noise intensity. As a matter of fact,

be viewed approximately as a schefire information theo- comparingS values of the artificial random mapping and the

retic parlancg26]). The usual expression real protein mapping7] we verify that S;,,4on=0.96 and
S, =0.67 andS;=0.69 for Lg, and Tg3, respectively. Our

P=— E oPInoP (10) entropylike measure of the mapping reconstructed by the

i=aBy perceptron is also a useful indicator of the information ex-

tracted by the network during the training stage. Actually it
provides a measure of reliability per single pattern. Averag-decreases from the initial valug=0.96 (of the perceptron
ing S” over the set oN patterns gives an average entropy of with randomly initialized weightsto the final values 0.67—
the mapping 0.69 of S| and S; mentioned above. Consistently with its

1.8 1

1000
1999
2998
3997

Patterns

FIG. 4. The activations of the output units practically sum to one even in the preseRasoide. The plot shows the sum of the outputs
(o) for the first 4000 patterns of a three-output perceptron performing on the test set of protein sedye(®es the Appendix
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meaning,S takes on smaller values for subsets with increasferences made in the present paper are not seriously limited
ing values ofp. For instance, the small subset wijg=0.9  in generality since the perceptron provides the maximum
(see Table)l hasS=0.30. possible information that can be extracted from the single-
residue sequence. Actually, in the structure classification
task, multilayer perceptrons either hand designed or starting
from scratch and statistical approaches do not improve on the
The present investigation focuses on the behavior of perperformance of the perceptr¢8,23,24.
ceptrons used to study noisy mappings within the general Some comments are in order as to the result of Sec. V,
framework specified in Sec. Il. Our main scope is to makeN, /N=35-40%, as well as to the role of reliable patterns
more quantitative the general notion that noise blurs the inin protein folding. First we note that it is reasonable to iden-
formation carried by each pattern and eventually leads to gfy the reliable patterns with the coding residues of a protein
decline of the efficiency of classification. We have exploredinat have been searched for in different works on the folding

the effect on the performance of the kind of noise that ariseéode_ In[14] it has been estimated that 60—70 % of the four

when patterns, belonging to different classes, exhibit Sig”iﬁ'residue patterns are coding. The apparent discrepancy with

cant overlap with pronounced mixing of sqbp.atterns. Theour range is mainly due to the larger probability that noise
major result of the present paper is the definition of a ran-

: : o . affects the pattern owing to our larger input window. A fur-
domlike regime of the perceptron, which is useful to estlmate[her comparison can be made with the finding of simulations
the performance as the network is confronted with néisy

reliablg patterns. As far as the prediction score is concerneuOf the fo.Id|ng proges$27]. The estimated vaIug of 25% fo.r
we have argued that in the presence of high noise the peFt‘e fraction of re3|due§ that prlesumably St"’?b"'ze thg folqmg
ceptron works in randomlike mode and the deterministic?Ucléus compares satisfactorily to our estimate; this might
computation performed by each output neuron is equivaIeH?'”t at' the possible .|nvolvement of reliable patterns in the
to a one-dimensional random walk on the available conneciormation of the folding nucleus, to the extent that this ac-
tions. The ideal conditions for observing the stochastic recompanies fast formation of elements of secondary structure
gime of the network are reproduced in the experiment of Fig[28]- This is, however, an open problem which needs more
2 where a perceptron has been trained on a randomized magork to be definitely answerel@8], although the event that
ping. reliable patterns take part in the early stages of folding is

A suitable benchmark for the stochastic model proposedonsistent with their strong intrinsic propensities for the sec-
in Sec. IV is provided in Sec. V by our experiments of pro- ondary native structure.
tein structure prediction. The effect of noise on the perfor- We are now in a position to answer the question whether
manceQ is most clearly seen by comparing the scores as théhe essential uncertainty that affects the prediction of protein
perceptron is tested on the same task but with different noissecondary structures is due to the inadequacy of the neural
intensities. Actually, the performance in the task of predict-network approach or to intrinsic deficiencies of the mapping
ing real protein structuregsee Table )l is Q,.;~0.63 under study. The above considerations about noise suggest
—0.66, whereas in the prediction of the random mapping othat there is an unavoidable upper bound to the prediction of
Fig. 2 it reduces tQ nqor=0.53. The introduction of an structures that is inherent to the mapping based on local in-
average entropylike estimate of noise intensity in Sec. V A iformation and cannot be overcome by merely enlarging the
a first step toward a quantitative correlation of noise andiata set. Our estimates of thf indicate that the randomlike
performance. The average entrdpys derived from the pat- component of the perceptron is polarized towards the most
tern entropyS® that is reminiscent of similar structural en- abundant clasgrandom coil. This reproduces the experi-
tropies used in the literaturesee, for example[14]). The  mental observation that perceptrons working on the protein
interesting novelty is thas” is directly evaluated from the structure task overestimate the most abundant ¢tassiom
output of the perceptron. The reduction frof@,.y to  coil) and underestimate the less frequent clasadsglix and
Qandom Correlates with the increase of noise from B sheet[7]. Thus it appears that the randomlike component
Siea= 0.67—0.69 t0S,,,40n= 0.96. It is apparent that the un- of a perceptron trained on a real data set, similarly to the
reliable patterns are mostly responsible for the amount operceptron trained on a noisy mapping, is driven by generic
noise of the mapping; accordingly, they correspond to nonpieces of information such as the composition in structures
coding patterns with high pattern entropj and cause the of the training set.
folding code to be fuzzy and nonlocal. It is a distinctive  Finally, our analysis gives useful suggestions as to the
feature of noncoding patterns that local interactions are obest conditions for studying noisy mappings. In particular,
minor importance and that their structure is essentially deterwe are able to rationalize the common strategy to use bal-
mined by the tertiary context. anced training set7,25]. Actually, using training sets with

In Eq. (2) the overall performance of the perceptron is quite similar fractions of the different structures amounts to
split in two contributions and we have taken advantage ofeducing the effectiveness of the randomlike component and
this representation to evaluate the numiemf reliable pat-  to favor the emergence of reliable patterns. The overall effi-
terns(by virtue of the approximatioiN,~N™"). Before dis- ciencyQ may happen to slightly decline while the number of
cussing our estimates let us posit that we feel confident oforrect guesses is much more uniformly distributed among
our results although it might seem questionable that we drawihe classes. Correspondingly, the overestimation of the more
conclusions about the sequence-to-structure mapping on tl@undant class and underestimation of the less abundant
ground of speculations made on the simplest possible feedtructures is sensibly reducgd. This improves in particular
forward neural network. However, we maintain that the in-the prediction of the underrepresent@gatterns.

VI. DISCUSSION
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APPENDIX ear transfer function associated with each output nearisn

P
In this appendix we give the full details concerning the (1+e7%) %, wherea is the local field defined by

perceptron architecture as well as the data base used to cope WNg

with the particular task of protein structure prediction illus- ag’ = 2 wcilip -6, (A1)

trated in Sec. V. In this task domain the mappifg, goes =1

from the space of primary sequendessidue sequence®  |P peing the activation valuéeither 1 or 0 of theith input
the space of secondary structures described in terms of thesyron corresponding to pattef and 6, the adjustable
three major classesr helix, 8 sheet, and random coil threshold of thesth output neuron. The output turns out to be
(ng=3). The input code envisages now one letter for eactbg’:f(as).
residue of the primary structure. For proteins the natural The output is interpreted according to the winner-take-all
choice for the orthonormal binary codeee Sec. )lis  rule; this amounts to identifying the prediction of the net-
Ns=20, each position within the 20-tuple corresponding towork with the class corresponding to the output neuron with
one of the 20 possible amino acid residues. The input layer ithe highest activation. The learning algorithm is the standard
designed to read patterns of 17 residues at a tivle-L7) backpropagatiofi30] which is operated with a learning rate
and contains 1X 20= 340 input neurons. 6= 0.01. Initial values of the weights are chosen randomly
The relevant information on the 62 proteins of the trainingfrom the uniform distribution in the range- 102,10 2].
setLg, is drawn from the Brookhaven Protein Data Bank. Two alternative learning strategies are usually envisaged.
For the sake of having results as homogeneous as possible the first schemébatch updatingprescribes that the weights
those reported in the literature, the set has substantial overlafldergo a one-shot change each time the network has
with the sets used in most of the papers devoted to the pré&canned the whole training set. The function to minimize is
diction of protein structures. The labels of the individual pro-the cumulative deviation from the desired outpigt
teins are listed iN7]. The pertinent information on each
protein includes the residue sequence and the atomic coordi- E= 2 E(P)= E 2 (os—ds)z. (A2)
nates of the crystallized protein. Assignment of the second- P e

ary structure of each protein is done by processing the amingne second scheme dictates that the weights are corrected
acid sequence with thesspprogram described if29). after each pattern presentatiguattern updating the error

_ The learning seL g, has 11 361 residues and the follow- function being the functiorE(P) of Eq. (A2). The latter

ing composition in structuresp,, = 0.25, py =0.22, and  procedure was used in the predictions of protein structures
phi = 0.53. The testing seT4; comprises 6634 residues, mentioned in Sec. V. The learning process is stopped when
with p5 = 0.28, p§ = 0.22, andpf,; = 0.50. The feed- the fractional change of the error function per cycle is less
forward network we have used is a perceptron with a singléhan 5< 10~ 4. Throughout this paper we measure the perfor-
layer of adjustable weights. The output layer has three realmance of the network in terms @, defined as the ratio of
valued neurons with activation values in the ran@d[, each  the correct guesses to the total number of patt&rdassi-
coding for one of the three structures predicted. The nonlinfied.
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